دانلود تحقیق محاسبه متوسط ممان مغناطیسی هسته در یک میدان H و دمای T
دسته بندی | الکترونیک و مخابرات |
فرمت فایل | doc |
حجم فایل | 70 کیلو بایت |
تعداد صفحات | 17 |
محاسبه متوسط ممان مغناطیسی هسته در یک میدان H و دمای T
Application of canonical distribution in (Nuclear Magnetism)
ماده را در نظر می گیریم که دارای N0 هسته در واحد حجم باشد. و در یک میدان مغناطیسی H قرار گرفته باشد.
هر هسته دارای اسپین و ممان مغناطیسی است.
ممان متوسط مغناطیسی ماده (در جهت H) در درجه حرارت T چقدر است؟
فرض می کنیم که هر هسته دارای برهم کنش ضعیف با سایر هسته ها و سایر درجات آزادی است. همچنین یک هسته را بعنوان سیستم کوچک در نظر می گیریم و بقیه هسته ها و سایر درجات آزادی را بعنوان منبع حرارتی می گیریم.
هرهسته میتواند دارای دوحالت باشد+یا همجهت بامیدان واقع در تراز انرژی پائین
یا در خلاف جهت میدان واقع در تراز انرژی بالا
(Cثابت تناسب است )
چون این حالت دارای انرژی متر است پس احتمال یافتن هسته در آن بیشتر است.
از طرفی احتمال یافتن هسته در حالت تراز بالای انرژی برابر است با
و چون این حالت دارای انرژی بیشتری است پس احتمال یافتن هسته در آن کمتر است. (چون تعداد حالات بیشتر است با افزایشE، افزایش می یابد و ذره شکل پیدا می شد در حالت بخصوص)
و چون احتمال یافتن هسته در حالت + بیشتر است پس ممان مغناطیسی هسته نیز باید در این جهت باشد.
با توجه به دو رابطه های مقابل مهمترین متغیر در این دو رابطه که نسبت انرژی مغناطیسی به انرژی حرارتی را نشان می دهد پارامتر زیر می باشد.
که نسبت انرژی مغناطیسی به انرژی حرارتی را نشان می دهد پارامتر زیر می باشد:
واضح است که
اگر
نمای هر دو e یعنی احتمال اینکه هم جهت با H باشد برابر با احتمال اینکه در خلاف جهت H باشد.
در اینصورت تقریباً کاملاً بطور نامنظم جهت گیری می کند بطوریکه:
از طرف دیگر اگر
اگر احتمال هم جهت بودن ؛ H بیشتر از خلاف جهت است
تمام این نتایج کیفی را به نتایج کمی تبدیل می کنیم.
بوسیله محاسبه واقعی متوسط
Magnetization mean magnetization per unit nolume in the direction of H
حالا چک کنیم که آیا استدلالهای کیفی قبلی را نمایان می کند؟
اگر
اگر
مستقل از H است که ثابت تناسب است X(chay)ij که به آن پذیرایی ماده مغناطیسی گفته می شود. Magnetic Susceptibility of Substance
X برحسب کمیات میکروسکوپیک و اینکه باد، رابطه عکس دارد به قانون کوری معروف است Curie’s Law
از طرف دیگر
مستقل از H است یا T اگر و مساوی با Mmax مغناطیسی شدن max of magnetization که ماده می تواند نمایش بدهد.
بستگی کامل متوسط مغناطیسی شدن به دمای T و میدان مغناطیسی H در شکل زیر نشان داده شده است.
منحنی زیر منحنی tanhy است که اگر y با نسبت کمتر از یک باشد آنگاه بستگی به مقدار H افزایش می یابد و اگر باشد این نسبت 0.63 است و اگر بیشتر از یک باشد آنگاه مغناطیس شدن به حالت اشباع و ماکزیمم خود میرسد.
متوسط مغناطیس شدن
برای مشاهده رزونانس در یک ماکروسکپی سیستمی را در نظر می گیریم که هستههای آن دارای
چون تعداد زیادی هسته در نمونه ماکروسکپی وجود دارند، تعداد هسته های در حالتهای ms برابر را با مشخص می کنیم.
فایل ورد 17 ص
دانلود تحقیق مبانی و اهمیت گرمادهی مادون قرمز
دسته بندی | محیط زیست |
فرمت فایل | doc |
حجم فایل | 17 کیلو بایت |
تعداد صفحات | 16 |
مقدمه :
در دنیای فرآوری مواد ، حرارت ودما ، پارامترهای مهمی هستند چه مواد فولاد ، شیشه ، وسایل الکترونیکی ، مقوا ، غذای منجمد ، تایر و یا کاغذ باشند ، در مرحله ای از فرآیند تولید ، حرارت داده می شوند یا از آنها گرفته می شود .کنترل این فرآیند حرارت دهی و دمای ماده ، برروی کیفیت محصول ، مصرف انرژی ، محصول نهایی مخارج عملیات وبهره وری تأثیر می گذارند .
کنترل نکردن دما ، اغلب قربانی کردن یکی از عوامل فرآیند تولید را باعث می شود . متعاقباً ، کنترل کردن دما ، و این عوامل فرآیندی برای حداکثر کردن اجرای هر گونه عملیات فرآوری مواد لازم و حقیقی هستند . با در نظر گرفتن مصرف انرژی بدون کنترل دما ، این امر باعث بیش از حد گرم کردن مواد می شود . تا مطمئن شویم که خواص محصول بدست آمده است و بر پایة یک توازن گرمایی عادی که عوامل تجهیزاتی و فرآوری برروی کارآیی عملیات تأثیر می گذارند ، مبلغ قابل توجهی برای بیش از حد گرم کردن پرداخت می شود . همانطوری که ذکر شد 5% یا F° 100 افزایش نسبت به گرمای مورد نیاز باعث کاهش 17%در انرژی می شود در یک کارخانة فولاد یا شیشه ، این رقم معادل میلیونها دلار در سال در زمینة مخارج سوخت می شود در دماهای کمتر ، کاهش های گرمایی کمتر احساس می شوند ولی آنها نیز قابل اندازه گیری و چشمگیر هستند . مورد دیگر کارکردن بدون کنترل دما ، شامل فرآوری مواد در دماهای کمتر است تا مطمئن شویم که نتایج مناسبی بدست می آوریم .
در عمل ریخته گری آلومینیوم ، که در گذشته اندازه گیری دقیق دما امکان پذیر نبود ، فشارها در سرعتهای بسیارپایین انجام می گرفت تا خواص آلومینیوم حفظ شود و مقدار دور ریز مواد به حداقل برسد .در حال حاضر، با تکنولوژی مادون قرمز از حرارت غیر تماسی استفاده می شود تا کارایی بیشتر شده و دور ریز مواد زائد نیز حذف می وشد . این توانایی در اندازه گیری دقیق حرارت در هنگام عمل فشار و نیز عمل ریخته گری باعث مهندسی مجدد فرآیند شده و ریخته گری آلومینیوم را به یک سطح جدید اجرایی رسانده است که در آن از کنترل فرآیند و اوتاسیون استفاده می شود . منافعی که در هر فشار نصیب ریخته گران آلومینیوم می شود ، به میلیونها دلار می رد و این با افزایش 30 تا 50 درصدی ظرفیت پذیرش وحذف دورریز محصول امکان پذیر شده است از یک منظر سرمایه گذاری کلان این ظرفیت پذیرش اضافه شده ، همچنین باعث به تأخیر انداختن سرمایه گذاریهای کلان در شیوه های پرس جدید شده که تحت استانداردهای قدیمی امکان انجام 3 پرس را با ظرفیت 4 را داراست .
این تنها یک مثال از آن چیزی است که امروزه مردم برای کسب سود رقابتی بیشتر در بازارهای جهانی با استفاده از کنترل اندازه گیری حرارت مادون قرمز انجام می دهند . در نگاه اول ، برخی مردم ، ترمومتری را کاری بسیار پرهزینه و پیچیده می بینند که شامل نصب و نگهداری آن می شود گرچه این باوری غلط است و این حسگرها به آسانی قابل نصب و کاربرد می باشند . و نسبت به منافع سرمایه گذاری پرهزینه و گران نمی باشند . بطور میانگین باز پس دهی سرمایه بین 2 روز تا 2 ماه تخمین زده شده است. منافع ترمومترهای مادون قرمز در مقایسه با دیگر تکنولوژیهای اندازه گیری دما به شرح ذیل می باشند .:
مبانی ترمومتری مادون قرمز
هر شیء از خود انرژی تابشی متساعد می کند و شدت این تابش دمای آن شی است . حسگرهای اندازه گیری دمای غیر تماسی ، به سادگی شدت این تابش را اندازه گیری می کنند . رابطه کلی انرژی تابشی ( شدت ) ، تابعی از دما و طول موج یک بدنة سیاه است . این منحنی های تابش جسم سیاه توسط قوانین پایه در فیزیک توضیح داده شده اند . و بطور انتخابی به عنوان پایة ترمومتری مادون قرمز بکار گرفته شده اند . این تابش مادون قرمز شبیه به تابش مرئی است ( 45/0 تا 75/0 میکرون ) بجز مواقعی که دارای طول موجهای بیشتر می باشد این شامل فتونهایی است که شکلی از انرژی می باشند که با سرعت نور ( 108×83571030/9 فوت بر ثانیه ) در خط مستقیم سیر می کنند . و میتوان آن را منعکس کرد و یا با اشیایی آن را انتقال داد این انرژی تابشی قابل دیده شدن و احساس شدن است که گرمای خورشید و یا یک اجاق الکتریکی و یا شعله مثال هایی از آن است . این مثالها ، مربوط به بخش مرئی طیف الکترومغناطیسی است که چشم انسان به آن حساس می باشد . منطقةمادون قرمز ، قسمت نامرئی طیف الکترومغناطیسی است ونشاندهندة شکل واقعی انرژی گرمایی است . بخش مادون قرمز از طیف الکترومغناطیس معمولاً با میکرون توضیح داده می شود و با رجوع به فیلترهای مادون قرمز استفاده شده در ترمومترهای مادون قرمز نشان داده شده است . حسگرهای طول موج کم عموماً برای کاربردهای دماهای بالا ومتوسط بکار گرفته می شود . و این بخاطر این است که در این ناحیه ، سطوح با سیگنال بالا ، و فایده های فنی وجود دارند . برای کاربردهای با دمای کم ، این کار به فیلترهای با طول موج بیشتر و پهنای باند بیشتر ( 8 تا 14 میکرون ) سپرده می شود تا انرژی تابشی اندازه گیری شود پیشینه شود .
فایل ورد 16 ص
دانلود تحقیق مبانی تئوری انفجار
دسته بندی | محیط زیست |
فرمت فایل | doc |
حجم فایل | 71 کیلو بایت |
تعداد صفحات | 54 |
در طول حداقل 200 سال گذشته، کاربرد واژه انفجار متداول بوده است. در زمانهای قبل از آن این واژه به تجزیه[1] ناگهانی مواد و مخلوطهای انفجاری با صدای قابل توجهی نظیر «رعد» اطلاق شده است. این مطلب از دیرباز شناخته شده است که انفجار تجزیه سریع مقدار معینی ماده است که به محض رخداد یک ضربه یا گرمایش اصطکاکی اتفاق میافتد. بنابراین تجزیه این مواد در شرایط مناسب میتواند بصورت ساکت و آرام رخ دهد.
کلمه انفجار از نظر فنی به معنی انبساط ماده به حجمی بزرگتر از حجم اولیه است. آزاد شدن ناگهان انرژی که لازمه این انبساط است. غالباً از طریق احتراق سریع، دتونیشن[3] (که در فارسی همان انفجار معنی میشود)، تخلیه الکتریکی با فرایندهای کاملاً مکانیکی صورت میگیرد. خاصیت متمایز کننده انفجار، همانا انبساط سریع ماده است. به نحویکه انتقال انرژی به محیط تقریباً بطور کامل توسط حرکت ماده (جرم) انجام میشود. در جدول زیر مقایسهای بین چند فرآیند آزادسازی انرژی انجام شده است:
چگالی انرژی (Watt/cc) | سرعت سوخت، شدن مواد (g/sec) | فشار (atm) | ماده |
10 | 1 | 1 | شعله استیلن |
106 | 103 | 2000 | باروت تفنگ |
1010 | 106 | 400000 | دتونیشن یک ماده منفجره قوی |
جدول (بالا) مقایسهای بین سه فرایند آزاد سازی انرژی
برای شعله تقریباً هیچ انتقال جرمی به اطراف رخ نمی دهد در حالیکه نیروی پیشرانش یک اسلحه قادر به راندن گلوله است و یک ماده منفجره قوی[4] هر چیز در تماس با خود را تغییر شکل داده و یا ویران میکند. قدرت منهدم کننده این مواد را «ضربه انفجار»[5] نامیده میشود که مستقیماً با حداکثر فشار تولید شده مرتبط است. توجه کنید که در جدول (بالا)، هیچگونه توصیفی از محل رخداد (تونیشن ماده منفجره قوی ارائه نشده است. این بدان معناست که فرایند دتونیشن از محدودیتهای فیزیکی مستقل است.
با توجه به مطالب بالا واضح است که دتونیشن تنها یکی از انواع حالات پدیده انفجار است بعبارت دیگر واژه دتونیشن تنها باید به فرآیندی اطلاق شود که در طی آن یک «موج شوک»[6] انتشار یابد.
متاسفانه بعلت قفرلفات مناسب فنی در زبان فارسی، دتونیشن به معنی عام انفجار ترجمه میشود و بنابراین در ادامه این مبحث برای پرهیز از اشتباه و رسا بودن مطلب همان واژه دتونیشن را به کار برده خواهد شد.
سرآغاز تحقیقات اخیر بر روی دتونیشن به سالهای 45-1940 م. که «زلدویچ» و «ون نیومان» هر یک به طور جداگانه مدل یک بعدی ساختار امواج دتونیشن را فرمولبندی کردند باز میگردد، گرچه یک مدل واقعی سه بعدی تا اواخر سال 1950 م به تاخیر افتاد.
2- پدیده دتونیشن:
دتونیشن یک واکنش شیمیائی «خود منتشر شونده»[7] است که در طی آن مواد منفجره اعم از مواد جامد، مایع، مخلوطهای گازی، در مدت زمان بسیار کوتاه در حد میکروثانیه. به محصولات گازی شکل داغ و پرفشار با دانسیته بالا و توانا برای انجام کار تبدیل میشود. فرض بگیرید قطعهای از مواد منفجره، منفجر گردد. به نظر میرسد که همه آن در یک لحظه و بدون هیچ تاخیر زمانی نابود میگردد. البته در واقع دتونیشن از یک نقطه آغازین شروع شده و از میان ماده بطرف انتهای آن حرکت میکند. این عمل بخاطر آن آنی بنظر میرسد که سرعت رخداد آن بسیار بالاست.
از نظر تئوری دتونیشن ایدهال واکنشی است که در مدت زمان صفر (با سرعت بینهایت) انجام شود. در اینحالت انرژی ناشی از انفجار فوراً آزاد میشود اصولاً زمان واکنش بسیار کوتاه یکی از ویژگیهای مواد منفجره است. هر چه این زمان کمتر باشد، انفجار قویتر خواهد بود. از نظر فیزیکی امکان ندارد که زمان انفجار صفر باشد. زیرا کلیه واکنشهای شیمیائی برای کامل شدن به زمان نیاز دارند.
پدیده دتونیشن با تقریبی عالی مستقل از شرایط خارجی است و با سرعتی که در شرایط پایدار[8] برای هر ترکیب، فشار و دمای ماده انفجاری اولیه ثابت است منتشر میشود. ثابت بودن سرعت انفجار، یکی از خصوصیات فیزیکی مهم برای هر ماده منفجره میباشد در اثر دتونیشن، فشار، دما و چگالی افزایش مییابند. این تغییرات در اثر تراکم محصولات انفجار حاصل میگردند.
پدیدهای که مستقل از زمان در یک چارچوب مرجع حرکت میکند. «موج» نامیده میشود و ناحیه واکنش دتونیشن، «موج دتونیشن»[9] یا موج انفجار نامیده میشود. در حالت پایدار این موج انفجار بصورت یک ناپیوستگی شدید فشاری که با سرعت بسیار زیاد و ثابت VD از میان مواد عبور میکند توصیف میشود واکنش شیمیائی در همسایگی نزدیک جبهه دتونیشن[10] است که باعث تشکیل موج انفجار میشود. این موج با سرعتی بین 1 و تا 9، بسته به طبیعت فیزیکی وشیمیائی ماده منفجره حرکت میکند. این سرعت را میتوان با استفاده از قوانین ترموهیدرودینامیک تعیین نمود. عواملی که در سرعت انفجار نقش دارند عبارتند از: انرژی آزاد شده در فرآیند، نرخ آزاد شدن انرژی، چگالی ماده منفجره و ابعاد خرج انفجاری.
یک مدل ساده برای این پدیده مطابق شکل زیر از یک «جبهه شوک»[11] و بلافاصله بدنبال آن یک ناحیه انجام واکنش که در آن فشارهای بسیار بالا تولید میشود، تشکیل شده است. ضخامت ناحیه واکنش در انفجار ایدهآل صفر است و هر چه انفجار بحالت ایدهال نزدیکتر باشد. ضخامت این ناحیه کمتر است. نقطه پایان این ناحیه، محل شروع ناحیه فشار دتونیشن[12] است.
مدل یک بعدی دتونیشن
فشار دتونیشن با رابطه زیر به سرعت دتونیشن و دانسیته مواد منفجره وابسته است:
(1)
که P مصرف فشار دتونیشن و P مصرف چگالی محصولات و P0 چگالی ماده منفجره است. بر اساس این فرض که چگالی محصولات دتونیشن بزرگتر از چگالی مواد منفجره اولیه است، یک رابطه کاربردی بصورت زیر استخراج میگردد.
(2)
از آنجا که زمان رخداد واکنش شیمیائی در یک فرآیند دتونیشن بسیار کوتاه است. انتشار و انبساط گازهای داغ حاصل در ناحیه واکنش بسیار اندک و غیر متحمل است و لذا این گازها هم حجم مواد منفجره اولیه باقی میمانند. این مطلب دلیل اصلی این نکته است که چرا فشار پشت جبهه انفجار بسیار بالاست. این فشار برای مواد منفجره نظامی در حدود Gpa 19 تا Gpa35 و برای مواد منفجره جاری کمتر است. همانطور که قبلاً ذکر گردید، موج دتونیشن مستقل از شرایط خارجی است. علیرغم این استقلال، جریان محصولات گازی که در پشت جبهه موج حرکت میکنند به زمان و شرایط مرزی وابسته است برای مثال یک بلوک مستطیل بزرگ از یک ماده منفجره را در نظر بگیرید که بر روی کل یکی از سطوح آن، به طور همزمان دتونیشن آغاز میشود. این سطح در خلا قرار دارد و هیچ مانعی برای انبساط گازها وجود ندارد. موج صفحهای دتونیشن با سرعت ثابت بدرون ماده پیشروی میکند و گازهای حاصل از انفجار که بلافاصله در پشت این جبهه موج قرار دارند با سرعتی کمتر از سرعت موج که سرعت جرم نام دارد در همان جهت حرکت میکنند. اما در سطح عقبی، گازها مشغول فرار در جهت مخالف هستند (در اثر خلا). همچنین فشار گاز در پشت جبهه موج بسیار بالاست، ولی در خلا پشت سر، صفر است لذا فشار بصورت منحن وار بین ایندو موقعیت تغییر میکند. نموداری از تغییرات فشار و سرعت جرم برای یک ماده منفجره جامد در شکل زیر نشان داده شده است.
همانطور که ملاحظه میشود ناحیه همسایه منطقه واکنش بسیار کم تحت تاثیر تغییر شرایط مرزی قرار میگیرد.
آغاز همزمان دتونیشن از روی کل یک سطح مشکل است. در عمل آسانتر است که آغاز انفجار از یک نقطه باشد. در اینحالت موج دتونشین از یک نقطه درون ماده منفجره گسترش یافته و گرادیان فشار در اینحالت از آنچه در شکل صفحه قبل نشان داده شده، تیزتر خواهد بود.
وقتی از مواد منفجره برای راندن و بحرکت در آوردن سایر مواد و سازمانها استفاده میشود محاسبه دقیق پروفیل فشار و سرعت جرم، ورودیهای لازم برای محاسبات حرکت سازه رانده شده میباشد. شکل این پروفیلها به معادله حالت محصولات انفجار وابستهاند، معادلاتی که تلاشهای بسیاری برای بدست آوردن آنها انجام شده و در دست انجام است.
3- موج شوک:[13]
یک موج شوک، جبهه شوک یا مختصراً یک شوک، موجی است که در ماده یک جهش[14] فشاری (یا تنشی) ناگهانی و تقریباً ناپیوسته ایجاد میکند، این موج بسیار سریعتر از امواج صوتی منتشر میشود، بدین معنی که این موج نسبت به محیط پیرامون خود فرا صوتی است و این خاصیت خود را بدون تغییر حفظ میکند.
موج شوک از جمله خواص اغلب مواد است و از خاصیتی از ماده که بر اساس آن سرعت انتقال صوت در ماده بصورت میباشد منتج میشود. اندیس s معرف حالت آنتروپی پایاست. این موج از نظر ترمودینامیکی برگشت ناپذیر است. و لذا آنتروپی سیستم در جبهه شوک در اثر لزجت و هدایت حرارتی افزایش مییابد. امواج شوک که امواج فشاری نیز نامیده میشوند، عامل شتابگیری ذرات ماده، در جهت انتشار خود هستند.
بر اساس مطالب بالا اکنون به تشریح دقیقتر موج شوک در پدیده دتونیشن و نیز در قطعه کار (ورق فلزی) میپردازیم.
1-3- موج شوک در فرآیند دتونشین:
موج شوک عبارتست از یک ناپایداری شدید فشاری (هیدرودینامیکی) که با سرعت ثابت و بسیار بالا، از میان مواد منفجره عبور میکند. واکنش شیمیائی در پشت و در همسایگی بسیار نزدیک آن رخ داده و موج شوک را پشتیبانی میکند. موج شوک و ناحیه واکنش مجموعاً «جبهه انفجار» را تشکیل میدهند. ضخامت موج شوک در حدود mm001/0 و ضخامت ناحیه واکنش در حدود mm1 تا cm1 است. شکل زیر ساختمان یک جبهه انفجار را نشان میدهد.
3-2- موج شوک در سطح قطعه کار:
یک بلوک بزرگ از ماده منفجره را در نظر بگیرید که دارای دو سطح موازی هم است، در نظر بگیرید. یکی از این سطوح در تماس با یک ورق بزرگ و تخت فلزی است و از روی سطح موازی آن، بطور همزمان یک دتونشین صفحهای آغاز میشود. بدین ترتیب یک جبهه انفجار تخت درون بلوک پیشروی خواهد کرد. هنگامیکه هنوز این جبهه به سطح ورق فلزی نرسیده است، فشار در این سطح برابر فشار اولیه باقی خواهد ماند. اما درست در لحظهای که موج دتونیشن به این سطح میرسد یک پرش ناپیوسته فشار، به فشار دتونشین که بالغ بر چند صد هزار اتمسفر میشود، بر روی سطح رخ میدهد. این فشار عظیم باعث میشود که فلز وادار به حرکت میشود. این حرکت در ابتدا از سطح تماس ورق و مواد منفجره آغاز شده و سپس در کل ضخامت ورق پیشروی میکند که مطابق شکل صفحه بعد مرز بین فلز متحرک با فلزی که هنوز شروع به حرکت ننموده است. موج شوک نام دارد. توجه کنید همانطور که در دتونشین، موج شوک مرز مشترک ناحیه آرام و مغشوش است. در سطح فلز نیز مرز بین سکون و حرکت فلز است. هر دو موج یک ناپیوستگی شدید در محیط مربوط به خود بوجود میآورند. ولی یک تفاوت عمده بین موج شوک منتشر شده در فلز با موج شوک دتونیشن وجود دارد و آن این است که برخلاف موج شوک دتونیشن، سرعت و فشار خود را از دست میدهد. علت این امر به تفضیل در بخش
در پشت شوک، فلز در حال حرکت است و به دانسیتهای بزرگتر از مقدار اولیه خود متراکم میشود. حتی موادی که معمولاً تراکم ناپذیر در نظر گرفته میشوند، بطور محسوسی در برابر این موج متراکم میشوند. تراکم فلز آنرا گرمتر خواهد ساخت. بنابراین موج شوک مرز بین فلز داغ و سرد نیز خواهد بود.
4-3- معادلات و روابط حاکم در دتونیشن یک بعدی
در اثر واکنش شیمیایی با سرعت خیلی زیاد (چند کیلومتر بر ثانیه) که با درجه حرارت و فشار بالا انجام میشود و در پشت سر خود محصولات گازی داغ و پر فشار را ایجاد میکند، میگویند انفجار انجام شده است انفجار حالت دائم در ماده منفجره با سرعت ثابت حرکت ولی انفجار ایدهآل انفجاری است که در آن واکنش در زمان صفر (با سرعت بینهایت زیاد) انجام شود. چون طبق تعریف زمان انجام واکنش برابر صفر است انرژی ناشی از انفجار فوراً آزاد میشود و فشار بسیار بالایی تولید میکند همانطور که میدانید یکی از علتهایی که مواد انفجاری فشار بالایی را تولدی میکنند مربوط به زمان کوتاه واکنش آنها میباشد. البته از نظر فیزیکی چنین چیزی امکان ندارد زیرا کلیه واکنشهای شیمیایی برای کامل شدن به زمان محدودی نیاز دارند، بنابراین مرز بین مواد واکنش یافته و مواد اولیه دقیقاً بر هم منطبق نیست و ناحیهای با ضخامت محدود بین این دو مرز وجود دارد که این ناحیه را ناحیه واکنش گویند. اگر دستگاه مختصات بر روی جبهه انفجار قرار داده شود. در آن صورت این ناحیه از نظر هندسی بدون تغییر باقی میماند. علت اصلی این کار این است که با قرار دادن دستگاه مختصات بر روی جبهه انفجار، فرایند از نظر ریاضی حالت پایدار پیدا میکند ولی اگر مبدا مختصات در روی یک نقطه ثابت قرار داشته باشد فرآیند غیردائم است و تجزیه تحلیل آن مشکل میشود). چون انرژیای که میکند، ثابت بودن سرعت انفجار یک مشخصه فیزیکی و مهم برای ماده منفجره میباشد با استفاده از این خاصیت (همانطور که در شکل زیر نشان داده شده است) میتوان آن را به شبیه به یک ناپیوستگی تیز دانست که با سرعت صابت انفجار در طول ماده منفجره حرکت میکند.
در سمت راست جبهه انفجار مواد منفجره واکنش نیافته با مشخصات و P0 و T0 و E0 وجود دارند و در سمت چپ جبهه انفجار محصولات گازی با خواص و P و T و E قرار دارند. البته فرض شده است که تمام مواد منفجره در واکنش شرکت کردهاند. در اثر انفجار گازهایی در دمای بالای T و فشار زیاد P به وجود آمده است و در اثر فشرده شدن گازها دانسیته آنها به P رسیده است که از P0 بیشتر میباشد و سرعت جریان (U) و در جهت راست میباشد.
فایل ورد 42 ص
دانلود تحقیق ماوراء صوت
دسته بندی | محیط زیست |
فرمت فایل | doc |
حجم فایل | 54 کیلو بایت |
تعداد صفحات | 55 |
پرتو X از لحظه کشف به استفاده عملی گذاشته شد و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها بویژه تکنیکهای تصویرسازی تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.
اختصاصات صوت
یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور میکنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است که نماینده اتمها یا ملکولها هستند که بوسیله فنرهای ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده میشود فنر اتصالی را حرکت میدهد و می فشرد به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای میکند ولی هر ذره کمی کمتر از همسایه خود حرکت میکند. کشش با فشاری که به فنر وارد میشود بین دو اولین ذره بیشترین است و بین هر دو تایی به طرف انتهای خط کمتر میشود. اگر نیروی راننده جهتش معکوس شود ذرات نیز جهتشان معکوس میگردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل میکنند به این معنی که آنها به جلو و عقب نوسان میکنند ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.
اگر چه هر ذره فقط چند میکرون حرکت میکند از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل میشود. در همان زمان یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید اثر حرکت به مسافت b منتقل میشود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل میشود تعیین میگردد.
امواج طولی
ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل میشود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت میکنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) میکنند. جبهه موج در زمان 1 در شکل 2-20 وقتی طبل لرزنده ماده مجاور را می فشارد آغاز میشود. یک نوار انبساط در زمان 2 وقتی که طبل جهتش معکوس میگردد پیدا میشود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید میکند. طول موج عبارت است از فاصله بین دو نوار انقباض یا دو نوار انبساط و بوسیلة علامت نشان داده میشود. وقتی که موج صوتی ایجاد شد حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل میدهد. اولتراسوند برحسب تعریف فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه میباشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz میباشد که در سال 1894 وفات یافت.
سرعت صوت
برای بافتهای بدن در محدودة اولتراسوند پزشکی سرعت انتقال صوت مستقل از فرکانس میباشد و عمدتاً بستگی به ساختمان فیزیکی ماده ای دارد که از میان آن صوت عبور میکند. خواص مهم محیط منتقل کننده عبارتند از : (1) قابلیت انقباض (compressibility) و (2) چگالی (Density). جدول 1-20 سرعت صوت را در بعضی از مواد شناخته شده از جمله چندین نوع بافت بدنی نشان میدهد. مواد به ترتیب افزایش سرعت انتقال مرتب شده اند و می توانید ببینید که صوت در گازها از همه کندتر در مایعات با سرعت متوسط و از همه تندتر در اجسام جامد حرکت میکند. ملاحظه کنید که تمام بافتهای بدن جز استخوان مانند مایعات رفتار میکنند و بنابراین همگی صوت را تقریباً با یک سرعت منتقل میکنند. یک سرعت 1540 متر بر ثانیه به عنوان میانگین برای بافتهای بدن بکار می رود.
قابلیت انقباض: سرعت صوت با قابلیت انقباض ماده منتقل کننده نسبت معکوس دارد به این معنی که هرچه ماده کمتر قابل انقباض باشد صوت در آن تندتر منتقل میشود. امواج صوتی در گازها آهسته حرکت میکنند زیرا ملکولها از هم دورند و به آسانی قابل انقباضند. آنها به گونه ای رفتار میکنند که گویی بوسیلة فنر سستی بهم بسته اند. یک ذره باید فاصله نسبتاً طویلی را بپیماید پیش از اینکه بوسیله یک همسایه تحت تأثیر قرار گیرد. مایعها و جامدها کمتر قابل انقباضند زیرا ملکولهایشان به یکدیگر نزدیکترند. آنها فقط نیاز به طی مسافت کوتاهی دارند تا در همسایه اگر گذارند بنابراین مایعها و جامدها صوت را تندتر از گاز منتشر میکنند.
چگالی: مواد متراکم متمایلند که از ملکولهای حجیم درست شده باشند و این ملکولها اینرسی خیلی زیادی دارند. حرکت دادن آنها و یا ایستاندن آنها وقتی به حرکت درآمدند مشکل است. چون انتشار صوت شامل حرکت شروع و توقف ذره ای منظم میباشد انتظار نداریم که یک ماده ای که از ملکولهای بزرگ (یعنی دارای جرم زیاد) تشکیل شده مانند جیوه صوت را با سرعت زیاد مانند ماده ای که از ملکولهای کوچکتر درست شده مانند آب منتقل کند. جیوه 9/13 برابر متراکمتر از آب است بنابراین ما انتظار داریم که آب صوت را خیلی سریعتر منتقل کند. با اینهمه از جدول 1-20 می توانی ببینید که آب و جیوه صوت را تقریباً با سرعت مشابه منتقل میکنند. این تناقض ظاهری با قابلیت انقباض آب توجیه میشود که 4/13 برابر قابل انقباضتر از جیوه است. کاهش قابلیت انتقال صوت در جیوه به سبب جرم زیادتر آن تقریباً بطور کامل در اثر دست آورد به سبب انقباض پذیری کمتر جبران میشود. به عنوان یک قانون کلی همین اصل بر تمام مایعات صادق است که چگالی و انقباض پذیری بطور معکوس متناسبند. در نتیجه تمام مایعات صوت را در یک محدوده نزدیک بهم منتقل میکنند.
ارتباط بین طول موج و سرعت موج به قرار زیر است. = V
V = سرعت صورت در محیط هدایت کننده |
= فرکانس (Hz) |
= طول موج (m) |
در محدوده فرکانس اولتراسوند سرعت صوت در هر محیط بخصوصی ثابت است. وقتی فرکانس افزایش یابد طول موج باید کاهش یابد. این موضوع در شکل 3-20 نشان داده شده است. در شکل A 3-20 لرزاننده فرکانس MHz 5/1 دارد. فرض می کنیم محیط آب باشد که صوت را با سرعت m/s 1540 منتقل میکند طول موج خواهد بود:
(1/sec) 1500000= m/sec 1540 و m 001/0 = بنابراین m 001/0 mm) 1) حداکثر طولی است که موج می تواند حرکت کند پیش از اینکه در زمان موجود موج جدید شروع شود. در شکل B 3-20 دو برابر شده و به MHz 3 رسیده است ولی موج با همان سرعت حرکت میکند بنابراین طول موج نصف شده و به m 0005/0 (mm 5/0) رسیده است.
شدت (Inteneity)
شدت صوت یا بلندی آن در محدوده قابل شنیدن با طول نوسان ذرات منتقل کننده صوت تعیین میشود هرچه بلندی با نوسان بیشتر باشد صوت شدیدتر است. شکل 4-20 امواج طولی با شدت کم و زیاد با فرکانس طول موج و سرعت مساوی را نشان میدهد. در شعاع با شدت بالا نوارهای انقباضی فشرده ترند. هرچه لرزاننده محکمتر ضربه بخورد انرژی بیشتری دریافت میکند و نوسانها پهن تر خواهند بود. این حرکات رفت و آمدی پهنتر به محیط هدایت کننده مجاور منتقل میشود و ایجاد شعاع شدیدتر میکند. شدتهای اولتراسونیک را برحسب وات (توان) بر سانتیمتر مربع بیان میکنند (ملاحظه کنید که این واحدها اختلاطی از SI و cgs می باشند ولی بهرحال این روشی است که ما انجام می دهیم). بیان ریاضی که شدت را به سرعت ذره سرعت موج و چگالی محیط مربوط میکند نسبتاً پیچیده است و برای رادیولوژیستها اهمیت عملی ندارد بنابراین ما سعی نمی کنیم که در اینجا آن را تشریح کنیم.
شدت نسبی صوت: شدت صوت را برحسب دسیبل (decibel) اندازه گیری میکنند. یک دسیبل یک واحد نسبی است و واحد مطلق نیست. تعریف ساده آن این است که یک دسیبل (dB) یک دهم بل (Bel) (B) است. یک بل مقایسه توان نسبی دو شعاع صوتی است که برحسب لگاریتم بر پایه 10 بیان شده اند. برای کسانی که ممکن است لگاریتم را فراموش کرده باشند بطور خلاصه آن را دوره می کنیم. از شماره 10 شروع می کنیم و آن را به توانهای مختلف مثبت و منفی می رسانیم و ما شماره هایی به شرح زیر بدست می آوریم: مثلاً 10 به توان چهار (104) برابر 10000 میباشد. لگاریتم 10000 برابر 4 است. ملاحظه کنید که در ستون وسط صفر وجود ندارد. لگاریتم صفر نامعین است. عدد 10 به توان 0 برابر 1 است و نه 0 که ممکن است در نظر اول بنظر آید.
|
به تعریف خودمان از بل برگردیم. بل یک مقایسه لگاریتمی شدت نسبی دو شعاع صوتی است. جدول 2-20 ارتباطات بین بل دسی بل و شدت (یا توان) یک شعاع اولتراسونیک را خلاصه کرده است. ملاحظه کنید که افزایش شدت از 1 به 2 بل شدت را با ضریب 10 افزایش میدهد. تعداد دسی بل با ضرب تعداد بل در 10 بدست می آید. اگر شعاع اولتراسوند شدت اولیه cm2 / وات 10 داشته باشد و اکوی برگشتی 001/0 وات بر cm2 باشد شدت نسبی خواهد بود:
dB 40- یا B 4- = 0001/0 log = log دسی بل یا علامت مثبت و یا علامت منفی دارد. علامت مثبت افزایش توان را نشان میدهد در حالیکه دسی بل منفی نشانگر خسران توان است. اولتراسوند درحالیکه از بافت عبور میکند توان از دست میدهد بنابراین در مثال بالا شدت شعاع برگشتی نسبت به شعاع اولیه dB 40- است. جدول 2-20 یک ستون دسی بلهای منفی و درصد صوت باقیمانده در سطح دسیبل جدید را در شعاع نشان میدهد. در مثال ما شدت اکوی برگشتی
(dB40-) فقط 01/0 % شدت ابتدایی است.
ترانسدوسرها (TRANSDUCERS)
یک ترانسدوسر وسیله ای است که می تواند یک نوع انرژی را به نوعی دیگر تبدیل کند. یک ترانسدوسر اولتراسونیک بکار می رود که علامت الکتریکی را به انرژی اولتراسونیک تبدیل کند که بتواند به داخل بافت منتقل شود و انرژی اولتراسونیک منعکس شونده از بدن را دوباره به علامت الکتریکی بدل نماید.
فایل ورد 55 ص
دانلود تحقیق کارایی بازدارندگی هسته ای
دسته بندی | محیط زیست |
فرمت فایل | doc |
حجم فایل | 16 کیلو بایت |
تعداد صفحات | 15 |
شاید برجسته ترین ویژگی جهان پس از جنگ همان باشد که - آن را می توان پس از جنگ نامید زیرا که قدرتهای بزرگ از سال 1945 با یکدیگر جنگ نکرده اند. چنین دوره طولانی از صلح در میان دولتهای قدرتمند بی سابقه است. چیزی که تقریباً غیر معمول است ، عبارت می باشد از احتیاطی که ابرقدرتها در مقابل یکدیگر بکار می بردند. اگر چه غالباً روابط ابرقدرت ها را به صورت بازی بزدل مطرح می کنیم ولی در حقیقت ایالات متحده و اتحاد شوروی هیچگاه همانند نوجوانان بی باک عمل نکرده اند. در حقیقت بحران های ابرقدرت ها همچون جنگ های گذشته به ندرت اتفاق می افتاد. اگر چه ممکن است کسی از بحران 1973 بگوید ولی در طول یک ربع قرن هیچ بحران جدی و شدید وجود نداشته است. به علاوه ،در همان بحران های ایجاد شده هم ، هر طرف به دنبال این بود تا امتیاز دهد که از نزدیک شدن به لبة جنگ جلوگیری شود. بنابراین چیزی که ما در بحران موشکی کوبا شاهد بودیم ، نوعی مصالحه بود تا پیروزی آمریکا ، کندی مایل نبود که از تمام مشوق ها دست بکشد و روس ها را به استفادة از زور مجبور سازد یا حتی باعث تدوام رویارویی شکننده گردد.
نسبت دادن این تأثیرات به وجود تسلیحات هسته ای معمولی و متعارف بوده است. به این دلیل که هیچ طرف نمی توانست با موفقیت در یک جنگ تمام عیار از خود حمایت کند، هیچ نوع پیروزی نمی توانست وجود داشته باشد یا همانطور که جان مولر بیان می دارد ،هیچ طرف نمی توانست از آن سود ببرد. البته این بدان معنی نیست که جنگ روی نخواهد داد. آغاز جنگی که انتظار پیروزی از آن نمی رود منطقی و عقلانی است ،اگر این اعتقاد وجود داشته باشد که نتایج احتمالی جنگ نکردن به مراتب بدتر از جنگ کردن باشد. جنگ همچنین می تواند از طریق اشتباه ، از دست دادن کنترل یا عدم عقلانیت روی دهد. اما اگر تصمیم گیرندگان منطقی باشند صلح محتمل ترین نتیجه خواهد بود. بعلاوه ،تسلیحات هسته ای می تواند توضیح دهندة احتیاط ابرقدرت ها باشد: زمانیکه هزینة دنبال کردن دستاوردها تخریب و نابودی کلی می باشد، تعادل و میانه روی منطقی می باشد.
برخی از تحلیلگران بحث کرده اند که این تأثیرات یا روی نداده است یا اینکه احتمالاً در آینده تداوم نخواهند داشت. پس فرد ایکل Fred Ikle در پرسیدن این سؤال تنها نیست که آیا بازدارندگی هسته ای می تواند تا آخر این قرن ادامه یابد یا نه .اغلب ادعا شده است که تهدید انتقام همه جانبه تنها به عنوان پاسخی برای حمله همه جانبة طرف دیگر باورپذیر است: از اینرو رابرت مک ناما را با تحلیل های محافظه کارتری که نظراتشان با نظر وی هیچ اشتراکی ندارند و بیان می دارند که تنها هدف نیروی استراتژیک خود برای استفادة نخست است ، موافقت می کند. بنابراین در بهترین حالت تسلیحات هسته ای ، صلح هسته ای را به بار خواهند آورد؛ آنها استفادة از سطوح پایین تر خشونت را جلوگیری نمی کنند – و حتی ممکن است این سطوح را نیز تسهیل کنند. از اینرو جای تعجب نیست که برخی ناظران ماجراجویی شوروی بویژه در آفریقا را به توانایی روسیه در استفاده از بن بست هسته ای به عنوان سپری می دانند که به دلیل آن می توانند کمک نظامی کرده و حتی نیروهای خود را در مناطقی که سابقاً کنترلی بر آن نداشتند مستقر سازند. به نظر می رسد که میانه روی ذکر شده تنها یک طرفه باشد. در حقیقت ، سیاست دفاعی آمریکا در دهة گذشته توسط نیاز به ایجاد انتخاب های هسته ای محدود برای بازداشتن هجوم شوروی جهت گیری شده بود، هجومی که ارزش های ما را تهدید و نابودی ایالات متحده را در پی داشت.
به علاوه ، درست است که تسلیحات هسته ای می تواند به نگهداشتن صلح بین ایالات متحده و شوروی کمک کرده باشد، ولی احتمالات ناخجسته برای آینده ، به تجربه های دیگر دولت ها مربوط می شود. متحدان دولت های دارای تسلیحات هسته ای مورد حمله قرار گرفته اند: ویتنام بر کامبوج غلبه کرد و چین هم به ویتنام حمله کرد . دو قدرت هسته ای با یکدیگر جنگ کرده اند البته در مقیاسی پایین : روسیه و چین در مرزهای مشترک خود زد و خورد داشته اند. حتی یک قدرت غیر هسته ای نیز سرزمین قلب یک قدرت هسته ای را تهدید کرده است: سوریه تقریباً اسراییل را در سال 1973 از بلندیهای جولان عقب راند و هیچ دلیلی برای اسراییل وجود نداشت که مطمئن باشد . سوریه مبادرت به حرکت به سمت اسراییل نخواهد کرد. برخی از آنهایی که انتظار ندارند ایالات متحده با چنین تهدیدی روبرو گردد ، پیش بینی کرده اند که تأکید مداوم بر تهدید تخریب متقابل نهایتاً به از بین رفتن روحیة غرب منجر خواهد شد. گفتن اینکه جمهوریهای دمکراتیک که امنیت شان به نابودی گستردة شهروندان وابسته است ، بدون ایجاد صلح و خلع سلاح یکجانبه می توانند به صلح برسند، غیر ممکن است.
جان مولر نوع دیگری از چالش برای ادعاهای یک انقلاب هسته ای را مطرح کرده است. او نه وجود الگوی صلح و ثبات بلکه موضوع منتسب شده را مورد اعتراض قرار می دهد. تسلیحات هسته ای اساساً برای این تأثیر نامناسب هستند؛ مدرنیته و تسلیحات غیر هسته ای مخرب ما را تا حد زیادی به همان موقعیتی نزدیک کرده است که شکافت اتم ممکن نبوده است. برخی از تجدید نظر طلبی های اگاهانه ما را به تفکر در سوال هایی وادار می کند که جوابهایشان کاملاً واضح و آشکار است. ولی فکر می کنم که عقلانیت سنتی درستی و صحت خود را نشان می دهد. معهذا در بحث های مولر قدرت زیادی است بویژه در اهمیت آنچه که او ثبات کلی می نامد و این حقیقت را یادآور می سازد که فاجعه آمیز بودن جنگ هسته ای به معنی این نیست که جنگ های متعارف آسان و غیر مخرب می باشند.
گفته مولر در اینکه اتم دارای قدرت جادویی نیست ، صحیح و درست می باشد. اگر چه شکافت اتمی مسایل جانبی زیادی همچون بارش رادیواکتیو و امواج الکترو مغناطیسی ایجاد می کند ولی مورد مهمی در رابطه با این حقیقت که مردم ، تسلیحات ، صنعت و کشاورزی در نتیجة نوع ویژه ای از انفجار نابود می شوند وجود ندارد. چیزی که مهم است عبارت می باشد از تأثیرات سیاسی تسلیحات هسته ای نه صدمات و آسیب های فیزیکی و شیمیایی انفجار. ما نیاز داریم تا مشخص کنیم که این تأثیرات چه هستند ،چگونه ایجاد شده اند و اینکه آیا تسلیحات متعارف مدرن از آنها الگوبرداری خواهند کرد.
تأثیرات سیاسی تسلیحات هسته ای
وجود ذخایر عظیم تسلیحات هسته ای از سه جنبه بر سیاست ابرقدرت ها تأثیر می گذارد. دو تا از این جنبه ها آشنا هستند: اول اینکه ویرانگری و تخریب یک جنگ همه جانبه به طور غیر قابل تصوری عظیم خواهد بود. دوم اینکه هیچکدام از طرفین- و در حقیقت طرف های سوم هم – از این تخریب و بلا در امان نخواهد بود. همانگونه که برنارد برودی ، توماس سیلنگ و بسیاری از اشخاص دیگر ذکر کرده اند ،چیزی که در مورد تسلیحات هسته ای مهم می باشد قتل عام نیست بلکه کشتن متقابل است. بدین معنی که هیچ کشوری نمی تواند در جنگ همه جانبة هسته ای پیروز باشد، در این مورد نه تنها اجتناب از جنگ بهتر از مبادرت به جنگ است بلکه همچنین بهتر است تا برای اجتناب از جنگ امتیازاتی نیز اعطاء گردد. باید ذکر کرد که اگر چه بسیاری از جنگ های گذشته نظیر جنگ جهانی دوم برای تمام متحدان به غیر از ایالات متحده (و شاید اتحاد جماهیر شوروی) اولین آزمایش را پشت سر نگذاشتند ولی دومین آزمایش را پشت سر خواهند گذاشت. به عنوان مثال ، اگر چه بریتانیا و فرانسه موقعیت خود را بوسیله جنگ بهبود نبخشیدند،ولی وضعیت آن ها بهتر از زمانی بود که اگر نازیها پیروز می شدند. بنابراین جنگ برای آنها معنا داشت حتی اگر همانطور که در آغاز جنگ
می ترسیدند،هیچ سودی از جنگ نصیبشان نمی شد. بعلاوه اگر متحدین در جنگ شکست خودرند، آلمانها – یا حداقل نازی ها - پیروزی کوچکی به دست آوردند، حتی اگر هزینة آن بسیار زیاد بوده باشد. اما همانطور که ریگان و گورباچف در بیانیه مشترک خود بعد از جلسه سران در نوامبر 1985 تأیید کردند ، در یک جنگ هسته ای پیروزی وجود نخواهد داشت و هرگز نباید به این جنگ مبادرت کرد. تأثیر سوم جنگ هسته ای بر سیاست ابرقدرت ها از این حقیقت نشأت می گیرد، تخریب و ویرانی می تواند بسیار سریع یعنی در طی چند روز یا حتی چند ساعت صورت گیرد . نه تنها می توان بحث کرد که بحرانی شدید یا استفاده محدود از زور – حتی نیروی هسته ای به طور اجتناب ناپذیری به ویرانی کلی منجر خواهد شد ، بلکه باید گفت که این احتمالی است که نمی توان آن را نادیده گرفت . به هر حال، حتی در دوران آرامش نیز یک طرف یا طرف دیگر می تواند به حمله ای همه جانبه و بدون دلیل مبادرت کند. محتمل تر اینکه یک بحران که می تواند به استفاده محدود از زور منجر شود، به نوبة خود هم می تواند جنگی تمام عیار و همه جانبه را بوجود آورد. حتی اگر هیچ طرفی خواهان این نتیجه نباشد احتمال زیادی از افزایش سریع و مرگبار جنگ وجود دارد.
مولر در زمانی که تسلیحات متعارف می توانند به لحاظ ویژگیهای تخریب ، برابری و سرعت جایگزین تسلیحات هسته ای شوند مبالغه می کند. به هر حال وحشت ناشی از جنگ های گذشته را نمی توان با تأکید بر سطح تخریبی تسلیحات کنونی نادیده گرفت . از اینرو همانند زمینه های دیگر نکته ای وجود دارد که تفاوت کمی به تفاوت کیفی تبدیل می گردد. شارل دو گل این امر را به طور فصیح بیان می دارد: بعد از یک جنگ هسته ای هر دو طرف نه قدرت دارند، نه قانون ،نه شهر ،نه فرهنگ ، نه گهواره و نه قبر . درست است که یک زمستان هسته ای و نابودی حیات بشری پس از جنگ هسته ای وجود نخواهد داشت، ولی تأثیرات جهانی آن بسیار بیشتر از جنگ های گذشته خواهد بود. مولر تفاوت های موجود در میزان تخریب بالقوه را زیاد مورد توجه قرار نمی دهد:«جنگ جهانی دوم سبب ویرانی کلی جهان نشد ولی سبب نابودی سه رژیم ملی شد. تفکر در مورد پریدن از طبقه 50 به جای طبقة 5 وحشتناک تر است ، ولی هر کسی که زندگی را تا حد بسیار کمی هم رضایت بخش بداند ، بعید است که دست به چنین عملی بزند.» جنگ این رژیم های ملی را نابود کرد ولی خود کشور یا حتی تمام ارزشهای مورد حمایت رژیم سابق را از بین نبرد. بسیاری از مردم در کشورهای محور از جنگ جهانی دوم نجات یافتند؛ و بسیاری نیز به سعادت و رفاه رسیدند. به طور کلی فرزندان آنها زندگی خوب دارند. شکاف بزرگی بین این نتیجه – حتی برای آنهایی که در جنگ شکست خوردند – و یک فاجعة هسته ای وجود دارد. اصلاً مشخص نیست که آیا جوامع می توانند پس از یک جنگ هسته ای بازسازی شوند یا اقتصادهای خود را مجدداً احیاء کنند. به علاوه ، نباید تأثیر تخریب فرهنگ ، هنر و میراث ملی را نادیده گرفت . حتی تصمیم گیرنده ای که امکان دارد حیات نیمی از جمعیت کشورش را به خطر بیاندازد، ممکن است به خاطر جلوگیری از نابودی گنج هایی که در طول تاریخ بدست آمده ، درنگ و تردید کند. بحث مولر که ذکر آن رفت به یک دلیل دیگر گمراه کننده است: کشورهایی که جنگ جهانی دوم را آغاز کردند نابود شدند ولی متحدان نه . این اینکه کشورهایی که ویران شدند به دنبال برهم زدن وضعیت موجود بودند، بیشتر اتفاقی بود تا از پیش تعیین شده ؛ چیزی که در این متن مهم است این می باشد که با تسلیحات متعارف حداقل یک طرف می تواند امید داشته باشد که از جنگ سود ببرد. مولر در بحث اینکه حتی زمانیکه تضاد منافع بین دو طرف زیاد باشد ، سطوح نسبتاً مطلق مجازات و تنبیه به ندرت برای بازدارندگی لازم هستند، کاملاً صحیح است. یعنی زمانیکه دولتها کاملاً اعتقاد دارند که دستاوردهای ناخالص از جنگ بسیار زیاد خواهد بود( در مقابل دستاوردهای خالص). روی هم رفته ایالات متحده می توانست ویتنام شمالی را شکست دهد. به همین صورت همانطور که مولر بیان می دارد ،ایالات متحده از تلاش برای آزادی اروپای شرقی حتی در عصر انحصار هسته ای آمریکا نیز بازداشته می شد.
فایل ورد 15 ص